Wake visualization of a heaving and pitching foil in a soap film
نویسنده
چکیده
Many fish depend primarily on their tail beat for propulsion. Such a tail is commonly modeled as a twodimensional flapping foil. Here we demonstrate a novel experimental setup of such a foil that heaves and pitches in a soap film. The vortical flow field generated by the foil correlates with thickness variations in the soap film, which appear as interference fringes when the film is illuminated with a monochromatic light source (we used a high-frequency SOX lamp). These interference fringes are subsequently captured with high-speed video (500 Hz) and this allows us to study the unsteady vortical field of a flapping foil. The main advantage of our approach is that the flow fields are time and space resolved and can be obtained time-efficiently. The foil is driven by a flapping mechanism that is optimized for studying both fish swimming and insect flight inside and outside the behavioral envelope. The mechanism generates sinusoidal heave and pitch kinematics, pre-described by the non-dimensional heave amplitude (0–6), the pitch amplitude (0 –90 ), the phase difference between pitch and heave (0 –360 ), and the dimensionless wavelength of the foil (3–18). We obtained this wide range of wavelengths for a foil 4 mm long by minimizing the soap film speed (0.25 m s) and maximizing the flapping frequency range (4–25 Hz). The Reynolds number of the foil is of order 1,000 throughout this range. The resulting setup enables an effective assessment of vortex wake topology as a function of flapping kinematics. The efficiency of the method is further improved by carefully eliminating background noise in the visualization (e.g., reflections of the mechanism). This is done by placing mirrors at an angle behind the translucent film such that the camera views the much more distant and out-of-focus reflections of the black laboratory wall. The resulting high-quality flow visualizations require minimal image processing for flow interpretation. Finally, we demonstrate the effectiveness of our setup by visualizing the vortex dynamics of the flapping foil as a function of pitch amplitude by assessing the symmetry of the vortical wake.
منابع مشابه
Vortex interactions with flapping wings and fins can be unpredictable.
As they fly or swim, many animals generate a wake of vortices with their flapping fins and wings that reveals the dynamics of their locomotion. Previous studies have shown that the dynamic interaction of vortices in the wake with fins and wings can increase propulsive force. Here, we explore whether the dynamics of the vortex interactions could affect the predictability of propulsive forces. We...
متن کاملSimulation of Pitching and Heaving Airfoil with Oscillation of Flow Boundary Condition
A pressure based implicit procedure to solve the Euler and Navier-Stokes equation is developed to predict transonic viscous and inviscid flows around the pitching and heaving airfoils with a high reslution scheme. In this process, nonorthogonal and non moving mesh with collocated finite volume formulation are used. In order to simulate pitching or heaving airfoil, oscillation of flow boundary c...
متن کاملage 1 Active vorticity control in a shear flow using a 23 flapping foil
It is shown experimentally that free shear flows can be substantially altered through 134) > t direct control of the large coherent vortices present in the flow. First, flow-visualization experiments are conducted in Kalliroscope fluid at Reynolds number 550. A foil is placed in the wake of a D-section cylinder, sufficiently far behind 160" the cylinder so that it does not interfere with the vo...
متن کاملA Comparative Numerical Study on the Performances and Vortical Patterns of Two Bioinspired Oscillatory Mechanisms: Undulating and Pure Heaving
The hydrodynamics and energetics of bioinspired oscillating mechanisms have received significant attentions by engineers and biologists to develop the underwater and air vehicles. Undulating and pure heaving (or plunging) motions are two significant mechanisms which are utilized in nature to provide propulsive, maneuvering, and stabilization forces. This study aims to elucidate and compare the ...
متن کاملExtracting Energy from Unsteady Flows through Vortex Control
Vortex control is a new paradigm in fluid mechanics, with applications to propulsion and wake reduction. A heaving and pitching hydrofoil placed in a flow with an array of oncoming vortices can achieve a very high propulsive efficiency and reduced wake signature. The canonical example of flow with regular arrays of vortices is the Krman vortex street, and this is our model for the inflow to the...
متن کامل